Analyses of bicyclic and tricyclic acids biomarkers in Potiguar Basin– Brazil Oils by ESI- and APCI-TOF MS

Lucinaldo S. Silvaa, Marcio S. Rochaa, Sidney G. Limal, José A. D. Lopesb, Antônia Maria G. L. Citóa, Antônia L. da S. Santosb, Igor V. A. F. Souzab

a Universidade Federal do Piauí – UFPI, Laboratório de Geocquímica Orgânica - LAGO, 64049-550, Teresina, PI, Brazil.
b Petrobras - Research and Development Center

*sidney@ufpi.edu.br

Copyright 2014, ALAGO.

This paper was selected for presentation by an ALAGO Scientific Committee following review of information contained in an abstract submitted by the author(s).

Introduction

Naphthenic acids comprise a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids. They are found in petroleum because either the deposit has not undergone sufficient catagenesis or it has been biodegraded by bacteria (Peter et al., 2005). Working with marine evaporitic oils from Fazenda Belem, Potiguar Basin, Lopes et al. (2005) found a good correlation between acidic and neutral biomarkers. However the acidic fraction requires laborious techniques of separation, purification and derivatization which considerably delay the analysis of these compounds.

This study compared ESI and APCI methods in determining the molecular distribution of naphthenic acids (n-alkanes, byciclic and tricyclic) in crude oil and in acidic fraction, resulting from the liquid-liquid extraction.

Experimental

Studied oils: Oil samples used in this study were obtained from Fazenda Belem field, in northwestern part of Potiguar Basin. More detailed geological information on this Basin was presented by Lopes et al. (1999).

Liquid-liquid Extraction: About 500mg of oil sample was dissolved in dichloromethane and extracted with 5% sodium bicarbonate solution.

ESI and APCI MS TOF Analysis: The acidic fractions and crude oil were obtained by liquid-liquid extraction and then detected by ESI-TOF MS and APCI-TOF MS. The GC-MS analyses showed low hopane/sterane ratios, high gammacerane (>60) and bisnorhopane (>10). Ts/Tm, C35/C34 indices of the oils allowed their classification as marine evaporitic type. Biodegradation was confirmed by the presence of 25-norhopane and the total loss of n-alkanes and isoprenoids.

Naphthenic acids were also evaluated in crude oil by both ESI and APCI MS techniques to simplify the analytical procedures, preserving the relative composition of compounds in the oils samples and detecting higher homologues. The acidic oil fractions were analyzed in a high resolution ESI- and APCI-TOF MS by direct infusion (Figure 1). Working with negative Electrospray Ionization-ESI, we detected a series of bicyclic (C15-C20) and tricyclic acids (C20-C26).

Results and Discussion

Hydrocarbons were detected by GC/MS, and carboxylic acids were obtained by liquid-liquid extraction and then detected by ESI-TOF MS and APCI-TOF MS. The GC-MS analyses showed low hopane/sterane ratios, high gammacerane (>60) and bisnorhopane (>10). Ts/Tm, C35/C34 indices of the oils allowed their classification as marine evaporitic type. Biodegradation was confirmed by the presence of 25-norhopane and the total loss of n-alkanes and isoprenoids.
Soft ionization methods (APCI- and ESI-TOF) produce one major ion from each compound, with little further fragmentation, and it avoids extraction, purification and derivatization steps, required for the analysis of naphthenic acids. Atmospheric pressure chemical ionization is a supplementary technique to electrospray. It is a soft ionization technique but not as soft as ESI. Because charged ions are not generated in APCI and it operates at high temperatures this technique is used to analyze smaller, thermally stable polar and non-polar compounds. Signal suppression due to unknown matrix interferences is a common problem in quantitative analysis, especially in ESI, so this is a limitation.

Analyses by both methods showed that it was possible to evaluate the distribution of n-alkanes, bicyclic and tricyclic acidic biomarkers without laborious processes of purification and derivatization of oil sample, for high to moderate level of biodegradation.

Conclusions
LC-MS (ESI and APCI) is an analytical method for the sensitive characterization of “molecular fossil” in crude oil. In general naphthenic acids are known to be difficult to analyze; some respond well in ESI, and others respond better in APCI mode. ESI and APCI - MS methods were evaluated for naphthenic acids analyses. Based on analyses of n-alkanoics, mono and sesquiterpenoids carboxylic acids, ESI in the negative ion mode was found to be superior, however both techniques have their specificity.

Acknowledgements
The authors thank CNPq (Brazilian research council) for fellowships; ANP (Brazilian Petroleum Agency), Petrobras S/A.

References